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1 Summary

1.1 Purpose

To describe details of control charting methods for monitoring injuries among Active Duty Army
Soldiers.

1.2 Overview

Statistical process control charts have recently been used for public health monitoring,
predominantly in healthcare and hospital applications such as the surveillance of patient wait times
or the frequency of surgical failures [e.g., 1-10]. Because the frequency of safety incidents like
industrial accidents and motor vehicle crashes will follow a similar probability distribution, the use of
control charts for their surveillance has also been recommended [11-15]. These control chart uses
can be extended to military applications, such as monitoring active duty Army injuries.

2 References

See Appendix A for a complete list of reference information.

3 Background

3.1 Historical Application

Statistical process control (SPC) monitoring is a process that has been used in many applications
to understand past process performance, remove existing sources of natural and unnatural
variability, and identify any new sources of variability [1]. Control charts are SPC tools that have
traditionally been used in manufacturing to monitor process defects. The variables being monitored
can be count data such as the number of non-conforming parts produced in the past month, or
numerical quantities such as the length measurement of a part being produced [2].

Basic control charts were first proposed by Walter A. Shewhart in 1929 and are, therefore, known
as Shewhart charts. The various Shewhart charts, the appropriate conditions for their use, and
some healthcare examples are given in Table 1.
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Table 1. Types of Shewhart Charts (adapted from [1])
Type of
control
chart

Probability
distribution

Measurements to apply to Healthcare examples

X-bar
and S
chart

normal
(Gaussian)

Continuous measurements with a “bell shape” Length of patient wait
times

Procedure durations
np-chart binomial Total number of dichotomous (yes/no) cases that result

in a certain outcome.

Only one outcome per sampling unit may be observed
(e.g., a surgery either develops an infection or it does
not).

Assumes a constant sample size/population.

Number of surgeries
that develop an infection

Number of patients
readmitted to the
hospital

p-chart binomial Fraction of dichotomous (yes/no) cases that result in a
certain outcome.

Only one outcome per sampling unit may be observed
(e.g., a surgery either develops an infection or it does
not). The fraction cannot exceed 1.00.

Sample size/population may change from sample to
sample.

Fraction of surgeries
that develop an infection

Fraction of patients
readmitted to the
hospital

c-chart Poisson Total number of incidents.

There may be more than one event per sampling unit
(e.g., more than one fall per patient).

Assumes a constant sample size/population.

Number of patient falls

Number of ventilator
associated pneumonias

u-chart Poisson Rate of incidence.

There may be more than one event per sampling unit
(e.g., more than one fall per patient). The rate may
exceed 1.00.

Sample size/population may change from time period to
time period.

Number of patient falls
per 100 patient days

Number of ventilator
associated pneumonias
per 100 ventilator days

3.2 Parameters

Control charts apply upper and lower thresholds called control limits to ensure the stability of a
monitored variable.  The control limits are typically set at three standard deviations (3σ) above and 
below the historical Phase I average, because the probability of a data point falling inside these
limits if the process remains in statistical control is 99.73% [1]. This can also be thought of as each
data point having a false alarm probability of 0.27%. The upper and lower control limits, ܮܥܷ and
,ܮܥܮ are stated as:
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+ҧߤ�=ܮܥܷ ߪ3 [1]

−ҧߤ�=ܮܥܮ ߪ3 [2]

where ҧisߤ the historical average or mean.

A baseline dataset of typical data is used to establish the ,ܮܥܷ ,ܮܥܮ historical mean, and historical
standard deviation parameters. This baseline is referred to as Phase I. The consideration of as
many Phase I historical data points as possible is desired in order to establish the most accurate
parameters [1], but at least 20-25 historical data points are typically used to reliably conclude
historical process stability [1, 2, 3]. When needed, provisional control limits based on fewer data
points can be used and refined over time [4]. The causes of any Phase I points outside the
established control limits should be investigated. If the cause is identified and addressed, the data
point should be removed so that it does not influence the Phase I parameters. It is often difficult to
identify specific assignable causes for out-of-control Phase I data points in health-related data, so
obtaining a state of statistical control in the baseline dataset can be a demanding task [16]. The
overall false alarm probability for a dataset with 25 historical data points would be fairly low,
1-(.9973)

25
= 6.5%.

New data points are actively monitored as they are observed in Phase II [5, 8]. In Phase II, when a
data point surpasses established upper or lower thresholds, the chart will “signal”, indicating that
the process is beyond its statistical control limits [5]. When the chart is monitoring negative events
like injuries, a signal above the upper limit indicates a significant increase in the frequency. A
signal below the lower control limit indicates a significant improvement, or decrease in the
frequency.

4 Current Application for Monitoring of Military Injuries

4.1 U-Chart

A u-chart was chosen to monitor the rate of military injuries. This chart is appropriate because the
Poisson-distributed injury rates are collected and reported in aggregate time periods (e.g., annually,
quarterly, monthly), and it is possible that more than one injury will be experienced per person. As
shown in Table 1, the only Shewhart chart that accounts for these properties is the u-chart. In a
given time period ,݅ the upper and lower control limits can be calculated by

+ҧߤ�=ܮܥܷ ߪ3 [3]

−ҧߤ�=ܮܥܮ ߪ3 [4]

where ҧisߤ the historical Phase I mean, the standard deviation canߪ be calculated as

=ߪ ට
ఓഥ


, [5]

and ݊ is the total person time for the time period .݅ Therefore, because the total soldier person-
time will change from time period to time period, ,ߪ ,ܮܥܷ and willܮܥܮ also change from time
period to time period [2]. ҧshouldߤ be calculated using all Phase I data and used for every Phase I
and Phase II calculation of ,ߪ ,ܮܥܷ and .ܮܥܮ



Public Health Report No. S.0023112

4

4.2 Overdispersion

A common problem with large datasets such as military injury data is the existence of
overdispersion, or greater variation than would usually be statistically expected, which can lead to
tight control limits and many false signals [8]. To address the potential for overdispersion, Laney
(2002) suggested the introduction of a correction factor to account for between-group standard
deviation [17]. The correction factor allows for consideration of both between-group and within-
group standard deviations. The new control limits are given as:

=ܮܥܷ +ҧߤ ௧௪�௨௦ߪ௪௧�௨,ߪ3 [6]

=ܮܥܮ −ҧߤ ௧௪�௨௦ߪ௪௧�௨,ߪ3 [7]

Laney’s equation for between-group standard deviation is:

௧௪�௨௦ߪ =
ଵ

ି(ଵ.ଵଶ଼)
∑ ܾܽ ቌݏ

ఓି �ఓഥ

ට
ഋഥ



−
ఓషభି�ఓഥ

ට
ഋഥ

షభ

ቍ
ୀଶ [8]

where ݇ represents the total number of Phase I observations. This equation for between-group
standard deviation essentially calculates the average difference between rates in subsequent
periods. Like ,ҧߤ ௧௪�௨௦ߪ should be calculated using all Phase I data and used in every Phase

I and Phase II calculation of andܮܥܷ .ܮܥܮ Combining Equations 5, 9, and 10 into Equations 6
and 7, the detailed equations for ܮܥܷ and ܮܥܮ that correct for overdispersion are:

+ҧߤ�=ܮܥܷ 3ට
ఓഥ




ଵ

ି(ଵ.ଵଶ଼)
∑ ܾܽ ቌݏ

ఓି �ఓഥ

ට
ഋഥ



−
ఓషభି�ఓഥ

ට
ഋഥ

షభ

ቍ
ୀଶ  [9]

−ҧߤ�=ܮܥܮ 3ට
ఓഥ




ଵ

ି(ଵ.ଵଶ଼)
∑ ܾܽ ቌݏ

ఓି �ఓഥ

ට
ഋഥ



−
ఓషభି�ఓഥ

ට
ഋഥ

షభ

ቍ
ୀଶ  [10]

4.3 FORSCOM and TRADOC Examples

Equations 9 and 10 were used to create control charts for active duty Army injuries by installation in
the Strategic Management System (SMS). A Phase I u-chart for injury rates among Active Duty
personnel at the United States Army Forces Command (FORSCOM) headquarters at Fort Bragg is
shown in Figure 1. The 2007-2013 quarterly injury rates were provided by the Armed Forces
Health Surveillance Center (AFHSC). The definition of injury is consistent with recommendations
for monitoring military injuries [18]. Beginning with 1

st
quarter 2014, the Phase II data will be

monitored using the parameters established in Phase I. We note that there is one out-of-control
point in the Phase I data, for the 1st quarter of 2012. This increase in injury rates occurred Army-
wide, but the specific cause of this increase could not be identified. Therefore, the outlier will not be
removed from Phase I data. Efforts should continue to be made to identify the cause of this
increase; the false alarm probability for this dataset is only 7.3%. Lower injury rates in the 4

th

quarter of most years should also be noted. This may be attributed to the relatively high number of
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military holidays and associated leave during 4
th

quarter. Seasonal variations in injury rates have
been demonstrated in Army basic training populations [19]. Previous data has suggested that
injury rates are higher in summer months (3

rd
quarter) whereas this data exhibits the highest rates

on average during 1
st

quarter. Control charting provides a comprehensive visualization of these
dynamic trends.

Linear regression has been recommended for community health analysis as a method for
identifying trends in data [20]. A linear regression of the 2007-2013 Fort Bragg data points does not
reveal a statistically significant linear trend.

Figure 1. Phase I Control Chart for Quarterly Injury Rates at Fort Bragg,
2007-2013

Control charts for the injury rates at the Army Training and Doctrine Command (TRADOC) basic
training sites were also investigated (Fort Jackson, Fort Benning, Fort Sill, and Fort Leonard Wood).
These rates are shown in the control chart in Figure 2.
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Figure 2. Phase I Control Chart for Quarterly Injury Rates at TRADOC Basic
Training Installations, 2007-2013

While the combined injury rates at these four training installations are higher than the rates at the
single installation represented in Figure 1, the rates at the training sites experienced a statistically
significant linear decrease (p=0.01) over the 28-quarter Phase I baseline period. If this tendency
continues in Phase II, consistently low rates below the LCL will indicate statistically significant
improvements in injury rates. If this is the case, the successful injury prevention strategies used in
TRADOC training installations should be identified and implemented in other installations like Fort
Bragg as well.

There are many similarities in the two data sets, including a relatively high injury rate in the 1
st

quarter of 2012 and regularly low injury rates during 4
th

quarters. However, a paired-samples t-test
reveals that the two trends are significantly different (p<0.001) since the TRADOC rates are linearly
decreasing and the FORSCOM rates are not. T-tests are used compare the regression trends in
two datasets and determine whether they are statistically similar [20].

5 Considerations for Future Work

Many extensions to basic Shewhart charts have been recommended for specific applications.
These alternate methods often provide more efficient signaling rates, but may also require more
rigorous statistical computation. As public health monitoring for military populations progresses,
some potential future considerations are listed below.
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 If a signal indicates an improvement in the rate of a negative event, the potential causes of
this improvement should be identified and reinforced. If improved data continue to be
observed, the control limits should be redefined and monitoring should be reset.

 ߪ2 warning limits could be added to encourage earlier investigation into potential causes of
deviations beyond control limits. Since data points will see a higher false alarm rate with
these lower limits (5% instead of 0.07%), a point outside of them should not be treated as
seriously as a point outside the standard ߪ3 limits.

 In the 1950s, Western Electric developed decision rules for detecting nonrandom patterns in
data, in addition to the signal outside the ߪ3 control limits, which could also be adapted for
monitoring Army injury rates. These additional rules include [2]:

o Two out of three consecutive points plot beyond ߪ2 warning limits
o Four out of five consecutive points plot at a distance of ߪ1 or beyond from the center

line, or
o Eight consecutive points plot on one side of the center line.

 A lower degree of data aggregation (e.g., monthly data rather than quarterly or annual data)
is desired to signal process shifts more quickly and reduce data loss [1, 6]. Furthermore,
lower degrees of aggregation would not require historical data that is as dated; for example,
only 2 years of monthly data would be needed to provide 24 baseline data points, rather than
the 6 years of quarterly data needed to provide 24 data points. In addition, if near-real-time
monitoring of time-between-events data can be achieved, this Weibull- or exponentially-
distributed data would provide better control chart performance than current methods
(aggregated Poisson counts) [21-23].

 Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control
charts are often used with Phase II data. These charts have been shown to more quickly
detect small changes than traditional Shewhart charts. There have been several applications
of CUSUM charts in public health applications like monitoring surgical failures or motor
vehicle accidents [e.g., 4, 7, 11, 14-15].

 It has been suggested that overdispersed count data should be modeled as a negative
binomial process instead of a Poisson process [10, 24]. Since there is no Shewhart chart for
this distribution, a CUSUM or EWMA chart would be required.

 Risk adjustment for health data has been applied when monitoring variables that can be
conditional on an individual’s personal degree of risk [e.g., 5, 7, 9-10]. For example, Steiner
“risk-adjusted” surgical fatality data based on a variety of factors, so that fatalities in surgical
patients with a lower pre-determined mortality risk were considered more significant and were
weighted more than fatalities in patients who entered surgery with a higher fatality risk [7]. In
this way, risk adjustment allows for some degree of standardization and consideration of
situational influence.

 There are some practical challenges to consider when implementing statistical process
control tools in health-related fields. Some concerns that may arise when monitoring health
data with control charts include, but are not limited to, the availability of appropriate data;
seasonality or other autocorrelation; uncertainty in control chart selection; and incorrect
interpretation of chart data [9, 10, 17]. These challenges should be considered as Army
injury control charts are refined.
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6 Point of Contact

The USAPHC IPP is the point of contact for this project, e-mail usarmy.apg.medcom-
phc.mbx.injuryprevention@mail.mil, or phone number 410-436-4655, DSN 584-4655. Specific
questions may be directed to author(s) listed at the front of this report.

Approved:

DR. BRUCE JONES
Program Manager
Injury Prevention Program
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